Imaging and manipulation of the competing electronic phases near the Mott metal-insulator transition.

نویسندگان

  • Tae-Hwan Kim
  • M Angst
  • B Hu
  • R Jin
  • X-G Zhang
  • J F Wendelken
  • E W Plummer
  • An-Ping Li
چکیده

The complex interplay between the electron and lattice degrees of freedom produces multiple nearly degenerate electronic states in correlated electron materials. The competition between these degenerate electronic states largely determines the functionalities of the system, but the invoked mechanism remains in debate. By imaging phase domains with electron microscopy and interrogating individual domains in situ via electron transport spectroscopy in double-layered Sr(3)(Ru(1-x)Mn(x))(2)O(7) (x = 0 and 0.2), we show in real-space that the microscopic phase competition and the Mott-type metal-insulator transition are extremely sensitive to applied mechanical stress. The revealed dynamic phase evolution with applied stress provides the first direct evidence for the important role of strain effect in both phase separation and Mott metal-insulator transition due to strong electron-lattice coupling in correlated systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Character of the Electronic States Near The Metal-Insulator Transition In Gallium Manganese Arsenide

The character of electronic states near the Mott-Anderson metal-insulator transition in the ferromagnetic semiconductor Ga1-xMnxAs is studied by cross sectional scanning tunneling microscopy. 200nm thick samples grown by MBE at UCSB with doping levels from 1.5%, close the metal-insulator transition, to 5%, deep into the metallic regime, were studied at 4.2K. The thickness of the samples ensured...

متن کامل

Photoinduced Phase Transitions in α-, θ-, and κ-type ET Salts: Ultrafast Melting of the Electronic Ordering

Photoinduced phase transitions in organic compounds with strong electron correlation ET [bis(ethylenedithio)-tetrathiafulvalene)-based salts α-(ET)2I3, θ-(ET)2RbZn(SCN)4, κ-(d-ET)2Cu[N(CN)2Br] were discussed based, on time resolved optical pump-probe spectroscopy using ~150 fs mid-infrared pulse, 12 fs near infrared pulse, and sub-picosecond terahertz pulse. (i) In charge-ordered insulators α-(...

متن کامل

Mechanism of hopping transport in disordered mott insulators.

By using a combination of detailed experimental studies and simple theoretical arguments, we identify a novel mechanism characterizing the hopping transport in the Mott insulating phase of Ca2-xSrxRuO4 near the metal-insulator transition. The hopping exponent alpha shows a systematic evolution from a value of alpha=1/2 deeper in the insulator to the conventional Mott value alpha=1/3 closer to t...

متن کامل

Slow dynamics of electrons at a metal–Mott insulator boundary in an organic system with disorder

The Mott transition-a metal-insulator transition caused by repulsive Coulomb interactions between electrons-is a central issue in condensed matter physics because it is the mother earth of various attractive phenomena. Outstanding examples are high-Tc (critical temperature) cuprates and manganites exhibiting colossal magnetoresistance. Furthermore, spin liquid states, which are quantum-fluctuat...

متن کامل

Metal-Insulator and Superconductor-Insulator Transitions in Correlated Electron Systems

Quantum transitions between the Mott insulator and metals by controlling filling in two-dimensional square lattice are characterized by a large dynamical exponent z = 4 where the origin of unusual metallic properties near the Mott insulator are ascribed to the proximity of the transition. The scaling near the transition indicates the formation of flat dispersion area due to singular momentum de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 12  شماره 

صفحات  -

تاریخ انتشار 2010